Face Tilt Detection in degrees from live webcam using Python 3 OpenCV script. The output will be displayed inside a GUI Desktop App.
This code is pretty useful for face angle detection or rotated face detection using Python programming language.
To detect the face and eyes of the user, we need 2 pre-trained XML classifiers. You can download these classifiers from the links given below.
pip install opencv-python
pip install numpy
import cv2 as cv import numpy as np # 0 for webcam feed ; add "path to file" # for detection in video file capture = cv.VideoCapture(0) face_cascade = cv.CascadeClassifier('haarcascade_frontalface_default.xml') eye_cascade = cv.CascadeClassifier("haarcascade_eye.xml") while True: ret, frame = capture.read() gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.1, 5) x, y, w, h = 0, 0, 0, 0 for (x, y, w, h) in faces: cv.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) cv.circle(frame, (x + int(w * 0.5), y + int(h * 0.5)), 4, (0, 255, 0), -1) eyes = eye_cascade.detectMultiScale(gray[y:(y + h), x:(x + w)], 1.1, 4) index = 0 eye_1 = [None, None, None, None] eye_2 = [None, None, None, None] for (ex, ey, ew, eh) in eyes: if index == 0: eye_1 = [ex, ey, ew, eh] elif index == 1: eye_2 = [ex, ey, ew, eh] cv.rectangle(frame[y:(y + h), x:(x + w)], (ex, ey), (ex + ew, ey + eh), (0, 0, 255), 2) index = index + 1 if (eye_1[0] is not None) and (eye_2[0] is not None): if eye_1[0] < eye_2[0]: left_eye = eye_1 right_eye = eye_2 else: left_eye = eye_2 right_eye = eye_1 left_eye_center = ( int(left_eye[0] + (left_eye[2] / 2)), int(left_eye[1] + (left_eye[3] / 2))) right_eye_center = ( int(right_eye[0] + (right_eye[2] / 2)), int(right_eye[1] + (right_eye[3] / 2))) left_eye_x = left_eye_center[0] left_eye_y = left_eye_center[1] right_eye_x = right_eye_center[0] right_eye_y = right_eye_center[1] delta_x = right_eye_x - left_eye_x delta_y = right_eye_y - left_eye_y # Slope of line formula angle = np.arctan(delta_y / delta_x) # Converting radians to degrees angle = (angle * 180) / np.pi # Provided a margin of error of 10 degrees # (i.e, if the face tilts more than 10 degrees # on either side the program will classify as right or left tilt) if angle > 10: cv.putText(frame, 'RIGHT TILT :' + str(int(angle))+' degrees', (20, 30), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv.LINE_4) elif angle < -10: cv.putText(frame, 'LEFT TILT :' + str(int(angle))+' degrees', (20, 30), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv.LINE_4) else: cv.putText(frame, 'STRAIGHT :', (20, 30), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv.LINE_4) cv.imshow('Frame', frame) if cv.waitKey(1) & 0xFF == 27: break capture.release() cv.destroyAllWindows()
We evaluated the performance of Llama 3.1 vs GPT-4 models on over 150 benchmark datasets…
The manufacturing industry is undergoing a significant transformation with the advent of Industrial IoT Solutions.…
If you're reading this, you must have heard the buzz about ChatGPT and its incredible…
How to Use ChatGPT in Cybersecurity If you're a cybersecurity geek, you've probably heard about…
Introduction In the dynamic world of cryptocurrencies, staying informed about the latest market trends is…
The Events Calendar Widgets for Elementor has become easiest solution for managing events on WordPress…