The below-mentioned Python 3 code-snippet allows you to skip/block Youtube ads. I’ve also used OpenCV
and PyAutoGUI
libraries to implement this project.
At first, you must install PyAutoGUI
and OpenCV Python
libraries. To do so, simply execute the below commands in the command line.
pip install pyautogui
pip install opencv-python
code.py
import cv2 import numpy as np import pyautogui import time # faster version # lopping over the template matching # reading the templates template3 = cv2.imread('template3.png', 0) template4 = cv2.imread('template4.png', 0) template5 = cv2.imread('template5.png', 0) template6 = cv2.imread('template6.png', 0) # setting the threshold for confidence in template matching threshold = 0.7 # alert box for stopping criteria pyautogui.alert(text = 'Keep the mouse pointer on the top left corner of screen to stop the program', title= 'Stopping Criteria') # continuous loop to check for youtube ad while True: time.sleep(1) im1 = pyautogui.screenshot() im1 = np.asarray(im1.convert(mode = 'L')) # im1.save('im1.png') # im1 = cv2.imread('im1.png', 0) # checking for template3 res = cv2.matchTemplate(im1, template3, cv2.TM_CCOEFF_NORMED) loc = np.where(res >= threshold) # checking if template is matched if loc[0].size != 0: # clicking on the first match pyautogui.click(list(zip(*loc[::-1]))[0]) continue # continue loop from start without further execution of the loop # checking for template4 res = cv2.matchTemplate(im1, template4, cv2.TM_CCOEFF_NORMED) loc = np.where(res >= threshold) # checking if template is matched if loc[0].size != 0: # clicking on the first match pyautogui.click(list(zip(*loc[::-1]))[0]) continue # continue loop from start without further execution of the loop # checking for template5 res = cv2.matchTemplate(im1, template5, cv2.TM_CCOEFF_NORMED) loc = np.where(res >= threshold) # checking if template is matched if loc[0].size != 0: # clicking on the first match pyautogui.click(list(zip(*loc[::-1]))[0]) continue # continue loop from start without further execution of the loop # checking for template6 res = cv2.matchTemplate(im1, template6, cv2.TM_CCOEFF_NORMED) loc = np.where(res >= threshold) # checking if template is matched if loc[0].size != 0: # clicking on the first match pyautogui.click(list(zip(*loc[::-1]))[0]) # Stopping criteria if pyautogui.position() == (0,0): pyautogui.alert(text = 'Adskipper is Closed', title = 'Adskipper Closed') break